Plant cell walls as targets for biotechnology.
نویسندگان
چکیده
Plants are the sources of major food, feed, and fiber products that are used globally. This past year has seen advances in our understanding of the enzymes that modify wall architecture, the cloning of the first cellulose synthase gene, and revisions to the lignin biosynthetic pathway. These discoveries have facilitated the development of new strategies to alter cell wall properties in transgenic plants.
منابع مشابه
Genetic and biotechnological approaches for biofuel crop improvement.
Research and development efforts for biofuel production are targeted at converting plant biomass into renewable liquid fuels. Major obstacles for biofuel production include lack of biofuel crop domestication, low oil yields from crop plants as well as recalcitrance of lignocellulose to chemical and enzymatic breakdown. Researchers are expanding the genetic and genomic resources available for cr...
متن کاملAltered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks.
Lignocellulosic feedstocks can be converted to biofuels, which can conceivably replace a large fraction of fossil fuels currently used for transformation. However, lignin, a prominent constituent of secondary cell walls, is an impediment to the conversion of cell walls to fuel: the recalcitrance problem. Biomass pretreatment for removing lignin is the most expensive step in the production of li...
متن کاملModifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?†
Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into fermentable sugars for bioenergy uses. Therefore, reducing lignin content and modifying its linkages have become major targ...
متن کاملDirect plant gene delivery with a poly(amidoamine) dendrimer.
Plant gene delivery is challenging due to the presence of plant cell walls. Conventional means such as Agrobacterium infection, biolistic particle bombardment, electroporation, or polyethylene glycol attachment are often characterized by high cost, labor extensiveness, and a significant perturbation to the growth of cells. We have succeeded in delivering GFP-encoding plasmid DNA to turfgrass ce...
متن کاملDesigner lignins: harnessing the plasticity of lignification.
Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in plant biology
دوره 1 2 شماره
صفحات -
تاریخ انتشار 1998